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Quantum information theory for the most part assumes that the senders, receivers and

eavesdroppers involved in a protocol share an inertial frame. For many of the applications

envisioned in the field this is a good approximation and sometimes, as in the case of

quantum key distribution, even a rigorously justifiable simplification. To the extent that

quantum information theory attempts to identify fundamental rules governing information

processing imposed by the laws of physics , however, neglecting relativity is ultimately

unacceptable. Luckily, much of the formalism of quantum information remains valid in

relativistic settings and the effect of changing reference frames can usually be modeled

as the introduction of noise. Thus, there has been a significant amount of work done

to calculate how entanglement degrades under a boost or acceleration [1–6] and how basic

quantum information theoretic protocols like teleportation, which were designed for inertial

participants, break down under acceleration [7].

The natural next step is to design communications protocols specifically adapted to

relativistic situations and, possibly, take advantage of uniquely relativistic features to ac-

complish otherwise impossible tasks. Kent has demonstrated, for example, that secure bit

commitment is possible using a protocol exploiting relativistic causality constraints even

though it is known to be impossible otherwise [8]. In this article, we consider a scenario in

which two inertial participants communicate via a noiseless, bosonic, dual-rail qubit channel

in the presence of a uniformly accelerated eavesdropper. In this context, the eavesdropper’s

Unruh noise becomes a resource which the inertial participants can potentially exploit to

encrypt their communications.

The private quantum capacity is the optimal rate at which a sender (Alice) can send

qubits to a receiver (Bob) while keeping them private from an eavesdropper (Eve). It had

not previously been studied because in most settings it is redundant to require privacy in

quantum communication: if the eavesdropper is modeled as being part of the environment

of the communications channel then quantum communication is automatically private.

This was in fact the insight behind Devetak’s proof of the quantum capacity theorem [9].

On the other hand, if Eve is assumed to have unrestricted access to the states while they

are in transit from Alice to Bob, then unconditional privacy is impossible without secret
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keys in a nonrelativistic model because Eve and Bob are effectively interchangeable. This

symmetry is broken, however, if Eve is assumed to be accelerating. The private quantum

capacity problem therefore provides an example of a question which is poorly motivated

in non-relativistic settings but very natural when relativity is taken into account. Because

of structural features of the Unruh effect, this private quantum capacity is exactly zero if

Alice is restricted to isometric encodings. However, for general encodings it is given by

the same formula as the entanglement-assisted quantum capacity [10] of the channel to the

eavesdropper’s environment, despite the absence of any operational connection between

the two problems. Of course, it is also possible to define a private classical capacity for

this setting, which we study for the purposes of comparison with its quantum version.

1 Unruh channels

The Unruh effect, whereby an observer uniformly accelerated in a vacuum experiences a

thermal bath [11, 12], can be understood as a consequence of the fact that an accelerated

observer has a different Fock representation of the quantum field than does an inertial

observer. In particular, the vacuum state as defined by an inertial observer will be a thermal

state in the Fock space defined by a uniformly accelerating observer. The transformation

between these Fock spaces is conveniently represented by a transformation of creation and

annihilation operators called a Bogoliubov transformation [13].

Consider a state |ψ〉 of a quantum field. The inertial observers may see this as a

many particle state: Πia
†
i |vac〉. The Bogoliubov transformation changes each ai to some

combination of the creation and annihilation operators of the non-inertial observer’s Fock

decomposition. In our case, the Bogoliubov transformation, which relates the Fock de-

compositions in the Minkowski and Rindler spacetimes corresponding respectively to the

inertial and accelerating observers, has a very special form because of the spacetime sym-

metries. The only mixing of modes is between the modes with the same momentum in the

two Rindler wedges. The Unruh channel N consists of this change composed with tracing

over the modes that are inaccessible to the accelerating observer because they are beyond

her horizon.

We will assume that Alice encodes information for Bob by preparing quantum states

of a bosonic, dual-rail qubit as illustrated in figure 1. In other words, she has access to

a two-dimensional sector of her (and Bob’s) Fock space, with basis vectors given by a

single excitation of a massless scalar field in one of two different modes, which we label by

their associated annihilation operators a and b.1 Uac(r) = exp[r(a†c† − ac)] is the unitary

operator transforming the sector of Alice’s Fock space to the corresponding sector of Eve’s

Fock space. (Because the Bogoliubov transformation is diagonal, we can safely ignore all

other modes [16, p. 106].) In short, the channel is Uac followed by the appropriate trace.

1Throughout the paper, we work with plane wave modes which are not, strictly speaking, physically

realizable. Nonetheless, the superpositions involved in defining a wave packet can be carried through

our calculations using approximate mode matching because the Bogoliubov transformation does not mix

modes. As a result, explicit calculations using wave packets do not lead to substantial differences for our

purposes [14, 15].
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Figure 1. Spacetime diagram of the communication scenario. Alice and Bob are inertial observers,

assumed without loss of generality to be at rest. Meanwhile, Eve is uniformly accelerated resulting

in future and past horizons indicated by the dashed lines x = ±t. Eve intercepts a message sent

from Alice to Bob but will be thwarted in her attempts to determine the contents even though the

only restrictions considered on Eve’s ability to perform quantum measurements are those arising

from the presence of the horizons.

The parameter r is related to Eve’s proper acceleration τ and the mode frequency ω by

tanh r = exp (−πω/τ) [7, 13].

In our dual-rail case, an arbitrary pure input state |ψ〉 = (αb†+βa†) |vac〉 is transformed

to Eve’s Fock space according to Uabcd = Uac ⊗ Ubd, which expands to

Uabcd(r) = 1
cosh2 r

etanh r(a†c†+b†d†) × e− ln cosh r(a†a+b†b+c†c+d†d)e− tanh r(ac+bd). (1.1)

For all states in the dual-rail basis, equation (1.1) reduces to Uabcd(r) =

1/ cosh3 r exp [tanh r(a†c† + b†d†)]. This allows us to write the state in Eve’s Fock space

as |ψ〉 = Uabcd(r)(αb
† + βa†) |vac〉 = (αb† + βa†)Uabcd(r) |vac〉. If we trace over degrees of

freedom beyond Eve’s horizon (cd), then σ = N (|ψ〉〈ψ|) = (1 − z)3
⊕∞

k=0 z
k σk is block

diagonal with blocks σk labeled by the total excitation number k (z = tanh2 r):

σk =
k

∑

n=0

[

|α|2(n+ 1)|k−n, n+ 1〉〈k−n, n+ 1|+ |β|2(k−n+ 1)|k−n+ 1, n〉〈k−n+ 1, n|

+ αβ̄
√

(n+ 1)(k − n+ 1)|k − n, n+ 1〉〈k − n+ 1, n| + h.c.
]

. (1.2)

Each block σk can be expressed as a linear combination of generators J
(k+2)
x , J

(k+2)
y

and J
(k+2)
z of the irreducible (k + 2)−dimensional representation of SU(2). ( ~J (2), for

example, consists of the Pauli matrices scaled by 1/2.) If σ = N (ρ) with ρ = I/2 + ~n · ~J (2)

arbitrary, then

σk = I(k + 1)/2 + nxJ
(k+2)
x + nyJ

(k+2)
y + nzJ

(k+2)
z . (1.3)

– 3 –



J
H
E
P
0
8
(
2
0
0
9
)
0
7
4

As a consequence, the channel N to Eve is covariant in the sense that

N (UρU †) = R(U)N (ρ)R(U †) where R is the infinite dimensional representation of

SU(2) given by the direct sum over all its finite dimensional irreps. This makes it easy to

diagonalize σ: the eigenvalues of σk are equally spaced with spacing S = ‖~n‖2 and largest

eigenvalue equal to (k + 1)(S + 1)/2.

2 Private quantum capacity

Capacities are defined by allowing arbitrarily many uses of a channel and asking that the

various data transmission or privacy requirements hold to any desired level of approxima-

tion in the limit of many uses. The private quantum capacity is defined as the optimal

rate at which Alice can send qubits to Bob while simultaneously ensuring that those qubits

appear to be completely encrypted from Eve’s point of view. There are several equivalent

ways of formalizing this notion, but we will take it to mean that Alice would like to transmit

halves of entangled pairs to Bob. Privacy in this context means that there should be no

correlation between the output of Eve’s channel and the halves of the entangled pairs kept

in Alice’s laboratory. Since the private quantum capacity has not been studied elsewhere,

we begin by providing some formal definitions and studying the general case.

Given are a quantum channel N1 from Alice to Bob and another N2 from Alice to Eve.

Let Φ2k represent the density operator of k maximally entangled pairs of qubits and τ2k

the maximally mixed state on k qubits. An (n, k, δ, ǫ) private entanglement transmission

code from Alice to Bob consists of an encoding channel E taking k qubits into the input of

N⊗n
1 and a decoding channel D taking the output of Bob’s channel N⊗n

1 back to k qubits

satisfying

1. Transmission:
∥

∥(id⊗D ◦ N⊗n
1 ◦ E)(Φ2k) − Φ2k

∥

∥

1
≤ δ.

2. Privacy:
∥

∥(id⊗N⊗n
2 ◦ E)(Φ2k) − τ2k ⊗ (N⊗n

2 ◦ E)(τ2k)
∥

∥

1
≤ ǫ.

A rate Q is an achievable rate for private entanglement transmission if for all δ, ǫ > 0

and sufficiently large n there exist (n, ⌊nQ⌋, δ, ǫ) private entanglement transmission codes.

The private quantum capacity is the supremum of the achievable rates. For a density

operator σAB, let H(A)σ be the von Neumann entropy of σA. The mutual information

I(A;B)σ is H(A)σ +H(B)σ −H(AB)σ.

Theorem 1 The private quantum capacity Qp(id,N ) when the channel from Alice to Bob

is noiseless is given by the formula max 1
2I(A;Ec)ρ, where the maximization is over all

pure states |ϕ〉AA
′

and ρ = (id⊗Nc)(ϕ). Nc is the channel to Eve’s environment Ec, that

is, the complement of N with respect to its isometric dilation.

Despite the absence here of any entanglement assistance, the theorem implies that

Qp(id2,N ) is exactly equal to the entanglement-assisted quantum capacity of Nc, usually

written QE(Nc) [10].

– 4 –
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To see that the advertised rate is achievable, write VE for the isometric extension of E ,

with output on A
′nF . The privacy condition applied to N is equivalent to entanglement

transmission to FEnc via Uhlmann’s theorem [17]. It is therefore sufficient to find codes

that simultaneously perform entanglement transmission to Bob and to FEnc . The encodings

analyzed in [18] do not depend on the channels, however, just the dummy input ϕ, so the

same encodings can be employed for both tasks. Choosing |F | = 2nf , the following sufficient

conditions for successful transmission can be extracted from [18, 19]:

Q < H(A)ϕ − f and Q < I(A〉Ec)ρ + f, (2.1)

where I(A〉Ec)ρ is the coherent information H(Ec)ρ − H(AEc)ρ. These constraints have

intuitive interpretations: the first is the noiseless rate to Bob through VE reduced by the

rate at which qubits are lost to F , while the second is the standard coherent information

rate for Nc augmented by a noiseless channel to F . Q is maximized subject to these

constraints when H(A)ϕ − f = I(A〉Ec)ρ + f . Using the fact that H(A)ϕ = H(A)ρ and

purifying ρ to |ρ〉AEEc, this equation can be written as f = 1
2I(A;E)ρ. Therefore, the rate

Q is achievable provided Q < H(A)ρ −
1
2I(A;E)ρ = 1

2I(A;Ec)ρ.

To prove optimality, suppose we have an (n, ⌊nQ⌋, δ, ǫ) private entanglement transmis-

sion code. Use R to denote the reference space for the maximally entangled state Φ2k in

the definition. Let |σ〉RFE
nEn

c be the purified final state after N⊗n
2 ◦ E has acted on Φ2k .

The privacy condition and the Alicki-Fannes’ inequality [20] imply that there is a function

g(δ) satisfying limδ→0 g(δ) = 0 such that

2⌊nQ⌋ = 2 log |R| ≤ I(R;Enc F )σ + ng(δ) (2.2)

= I(R;F )σ + I(R;Enc |F )σ

≤ I(R;Enc |F )σ + ng(δ + ǫ)

≤ I(RF ;Enc )σ + ng(δ + ǫ).

The first inequality is a consequence of the existence of the decoding channel D and the

monotonicty of mutual information. The second inequality holds because entanglement

transmission to Bob requires no leakage to F , leading to an upper bound on I(R;F )σ. The

final inequality follows from the chain rule and the nonnegativity of mutual information.

Labeling RF by A, we can conclude that

Qp(id,N ) ≤ lim
n→∞

max
1

2n
I(A;Enc )ρ, (2.3)

where the maximization is pure states |ϕ〉A
nA′n

and ρ = (id⊗N⊗n
c )(ϕ). It is well-known,

however, that fixing n = 1 does not affect the expression on the right hand side of the

inequality [10], finishing the proof of optimality.

2.1 Unruh case

Let us now focus on the the case where N is the Unruh channel. Inspection of figure 1

reveals that there is only a finite amount of time during which Eve can intercept messages

– 5 –
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from Alice to Bob. The limit n → ∞ of infinite length messages considered in the defini-

tion of the private classical capacity therefore does not formally apply, but codes nearly

achieving the capacity can be found for reasonably small n.

It is instructive to first consider encodings E that are isometric, a restriction that does

not affect the regular (non-private) quantum capacity. Private entanglement transmission

codes then simply become codes that transmit entanglement beyond Eve’s horizon to Ec.

Taking the partial trace over (ab) instead of (cd) of the pure state |ψ〉 from Eve’s

Fock space yields the channel Nc from Alice to Ec, the Hilbert space describing degrees of

freedom beyond Eve’s horizon. The result is

Nc(ρ) = z σ̄ + (1 − z)ω0, (2.4)

where σ = N (ρ) and ω0 is a diagonal state independent of ρ. Therefore, given the output

σ to her channel, Eve can simulate the channel to Ec up to complex conjugation. The

simulation is simple. With probability z she does nothing to σ and with probability 1 − z

she prepares ω0 and uses it to replace σ.

Now suppose that it is possible to transmit entanglement (and therefore quantum

states) beyond Eve’s horizon. Write D(τ) =
∑

jDjτD
†
j for the decoding channel on Ec.

Since D̄(τ) =
∑

j D̄jτD̄
†
j is also a quantum channel, Eve can apply D̄ to the output of

her simulation. Assuming high fidelity transmission of a quantum state |ψ〉 beyond Eve’s

horizon, the output of D̄ will be a high fidelity transmission of
∣

∣ψ̄
〉

. That is impossible be-

cause the map |ψ〉 7→ |ψ〉
∣

∣ψ̄
〉

, the result of applying both decodings in parallel, is nonlinear.

The only possible conclusion is that it must be impossible to transmit entanglement be-

yond Eve’s horizon. It is therefore impossible to achieve private entanglement transmission

using isometric codes.

Releasing the restriction, however, yields a non-zero capacity. In fact, because

I(A;Ec)ρ in Theorem 1 is a concave function of ϕA
′

and the Unruh channel is covari-

ant, the maximum will be achieved with ϕA
′

maximally mixed. Evaluating the formula

yields a compact expression for Qp(id,N ) which we have plotted in figure 2:

1

2

(

1 −
(1 − z)3

2

∂2

∂z2

∂

∂s
[(z − 1)Li (s, z)]s=0

)

, (2.5)

where Li (s, z) is the polylogarithm function.

3 Private classical capacity

Define the private classical capacity Cp(N1,N2) as the optimal rate, measured in bits per

channel use, at which Alice can send classical data to Bob over the channel N1 in such a way

that Eve is incapable of distinguishing the messages based on her view, the output of the

channel N2. This definition generalizes the notion of private classical capacity introduced

in [9], which corresponds to the special case where N2 is the complement of N1.

Using the methods of that paper and some additional arguments, one can show that

Cp(id2,N ) = limn→∞C
(n)
p (id2,N ), where C

(n)
p (id2,N ) is

1 −H
(

N (I/2)
)

+ max
|ψn〉

1

n
H

(

N⊗n(|ψn〉〈ψn|)
)

(3.1)

– 6 –
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Figure 2. (a) The private quantum capacity Qp(id2,N ) is non-zero for all positive accelerations

and strictly less than C
(n)
p for all n, which give successively better lower bounds on the private

classical capacity. (b) H(N (|ψ1〉〈ψ1|)), the entropy of the output state for a pure input or, equiv-

alently, the entanglement between Eve’s output and Eve’s environment. This is an intermediate

quantity required in the evaluation of C
(1)
p and was also the focus of [7], where it was approximated

by diagonalizing the k = 0, 1 blocks of equation (1.2). Using our methods, it can be shown that the

exact value of the entanglement is −3 [z ln z/(1 − z) + ln (1 − z)] + (1 − z)2 ∂
∂z

∂
∂s

Li (s, z) |s=0 nats.

and |ψn〉 is any pure input state to n copies of the channel. Evaluating the capacity

therefore reduces to determining the maximal output entropy of the Unruh channels N⊗n

for pure input states. The optimization for n = 1 is trivial due to the covariance of N and

gives that Cp(id2,N ) is bounded below by

C(1)
p (id2,N ) = (1 − z)2

∂

∂z

[

∂

∂s
Li (s, z) |s=0

]

−
(1 − z)3

2

∂2

∂z2

[

z
∂

∂s
Li (s, z) |s=0

]

. (3.2)

We plot these bounds for n = 1, 2 in figure 2.

4 Conclusions

The assumption that an eavesdropper is accelerating can be exploited to send data securely

for all non-zero accelerations. In the case of the private quantum data, we found a single-

letter formula for the capacity for general eavesdropper channels, demonstrating it to be

equal to the entanglement-assisted quantum capacity of the channel to the eavesdropper’s

environment. We leave it as an open question to explain why these seemingly unrelated

tasks should have matching capacity formulas but note that in light of [21], these are now

the only channel capacity problems in quantum information that can be considered fully

solved.2 In the case of private classical data transmission, the problem of calculating the

associated private classical capacity reduces to that of determining the maximal output

2There is also a remarkable formula for the so-called environment-assisted quantum capacity of a quan-

tum channel [22] but that problem is of a very different type since it assumes full control of the channel’s

environment, nearly the opposite of what is normally meant by a noisy channel.

– 7 –
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entropy of the Unruh channel for pure input states. This entropy corresponds to the

entanglement between Rindler field modes accessible to the eavesdropper and those not

accessible, a question of independent interest [7] resolved in this paper.

When evaluating the private quantum capacity with an accelerating eavesdropper, we

began by considering isometric encodings, a class known to be sufficient for non-private

quantum data transmission. With this restriction, private quantum data transmission re-

duces to sending entanglement beyond the eavesdropper’s horizon. An argument related

to the impossibility of cloning demonstrates this to be impossible, an observation reminis-

cent of the analysis in [23, 24], where the interplay of the no-cloning theorem and horizons

was used to place self-consistency constraints on the black hole complementarity principle.

We ended by evaluating the private quantum capacity for unrestricted encodings, finding

a compact expression for the capacity which is non-zero for all positive accelerations, in

sharp contrast to no-go result for isometric encoders.
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